Dr. La Rochelle published an article in BMJ EBM this month with a very useful figure in it (see below). It is useful because it can help our learners (and ourselves) remember the relationship between the type of evidence and its believability/trustworthiness.
Lets work through this figure. The upright triangle should be familiar to EBM aficionados as it is the typical hierarchy triangle of study designs, with lower quality evidence at the bottom and highest quality at the top (assuming, of course, that the studies were conducted properly). The “Risk of Bias” arrow next to this upright triangle reflects the quality statement I just made. Case reports and case series, because they have no comparator group and aren’t systematically selected are at very high risk of bias. A large RCT or systematic review of RCTs is at the lowest risk of bias.
The inverted triangle on the left reflects possible study effects, with the width of the corresponding area of the triangle (as well as the “Frequency of Potential Clinically relevant observable effect arrow) representing the prevalence of that effect. Thus, very dramatic, treatment altering effects are rare (bottom of triangle, very narrow). Conversely, small effects are fairly common (top of triangle, widest part).
One way to use this diagram in teaching is to consider the study design you would choose (or look for) based on the anticipated magnitude of effect. Thus, if you are trying to detect a small effect you will need a large study that is methodologically sound. Remember bias is a systematic error in a study that makes the findings of the study depart from the truth. Small effects seen in studies lower down the upright pyramid are potentially biased (ie not true). If you anticipate very large effects then observational studies or small RCTs might be just fine.
An alternative way to use this diagram with learners is to temper the findings of a study. If a small effect is seen in a small, lower quality study they should be taught to question that finding as likely departing from the truth. Don’t change clinical practice based on it, but await another study. A very large effect, even in a lower quality study, is likely true but maybe not as dramatic as it seems (ie reduce the effect by 20-30%).
I applaud Dr. La Rochelle for developing a figure which explains these relationships so well.